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Abstract. Using formal scattering theory, the scattering wave functions are extrapolated to negative ener-
gies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the cor-
responding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state
binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum
number l > 0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is
tested analytically by solving the Schrödinger equation in the p-wave case exactly for the scattering and
the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well.
A numerical resolution of the Schrödinger equation in the p-wave case and of a square-well Kisslinger
potential is carried out to investigate the range of validity of the extrapolated connection. It is found that
the derived relation is satisfied best at low energies and short distances.

PACS. 03.65.Nk Scattering theory – 24.90.+d Other topics in nuclear reactions: general (restricted to
new topics in section 24)

1 Introduction

It is well known that the scattering-state wave functions
and the corresponding bound-state ones are proportional
when the scattering wave functions are extrapolated to the
positions of bound-state poles. Joachain showed that the
relative normalization, the ratio of the normalized bound
and scattering wave functions at a bound-state pole, de-
pends on the form of the potential through the corre-
sponding Jost functions and their derivatives [1]. How-
ever, a later work [2] derived a simple relation showing
that the relative normalization is uniquely determined by
the bound-state binding energy in the case of a local po-
tential only. The case of a non-local but separable Yam-
aguchi potential was also studied and the relative normal-
ization was found to depend on the binding energy when
the binding energy is small [3]. In [4], we proved analyt-
ically that the relation derived in [2] is still valid in the
presence of a velocity-dependent Kisslinger potential in
the s-wave case. Here, we shall extend this relation to the
velocity-dependent Kisslinger potential for l > 0. To test
the validity of the extrapolation relation, the Schrödinger
equation is solved exactly for the scattering and bound-
state wave functions in the p-wave case and the Kisslinger
potential is taken to be a square well. A numerical reso-
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lution of the Schrödinger equation is also carried out to
investigate the range of validity of the derived relation.

The simplified relation would be useful in reactions
where final-state interaction effects are important. For in-
stance, one is able to express the cross-section for the re-
action pp → pnπ+ in terms of those for pp → dπ+ and
pp → ppπ0 at low binding energies [5,6].

The Kisslinger potential is obtained from the equations
describing the multiple scattering of particles off complex
nuclei. It is an improved optical model in the sense that
its form and magnitude reflect the scattering of the inci-
dent particle by the individual nucleons bound in the nu-
cleus [7]. Using such a potential it was possible to predict
the predominantly p-wave nature of the elementary pion-
nucleon coherent scattering. Kisslinger theory resulted in
a term proportional to

∇ · (ρ∇ψ) = ρ∇2ψ + ∇ρ · ∇ψ. (1)

The first term on the right is proportional to the kinetic
energy, and combines with the kinetic energy term in the
Schrödinger equation. However, the second term is pro-
portional to the rate of change of density and hence it
is sensitive to the diffuse edge of nuclei. This property
made possible the prediction of the backward scattering
of mesons by light nuclei, where the effect of the diffuse
edge is important.
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2 Schrödinger equation for a
velocity-dependent Kisslinger potential

Kisslinger developed a velocity-dependent potential,
which may be expressed as

2mV (r) = U(r) + ∇ · (ρ(r)∇), (2)

where the reduced potential U(r) and the Kisslinger term
ρ(r) are real, spherically symmetric functions of the radial
variable r. For a particle of mass m, the Schrödinger equa-
tion for arbitrary angular momentum may be expressed as

v′′
l (k, r) − ρ′

1 − ρ
v′

l(k, r) +
1

1 − ρ

×
[
k2 − U(r) +

ρ′

r
− (1 − ρ)

l(l + 1)
r2

]
vl(k, r) = 0, (3)

where the energy of the particle is defined as E = k2/2m,
and the prime designates a derivative with respect to r. In
the last equation the dependence of ρ on the radial variable
r has been omitted for clarity. Obviously, the Kisslinger
term ρ(r) must be bounded away from 1. So for all r, either
ρ(r) > 1 or ρ(r) < 1. In what follows we shall derive the
conditions that ρ(r) and U(r) must satisfy so that eq. (3)
has well-behaved, physically acceptable solutions.

2.1 Small r behavior

Close to the origin one may assume

U(r) ≈ c0r
q, ρ(r) ≈ b0r

p. (4)

If p > 0, then ρ(r) < 1 for all r and eq. (3) is regular at
the origin if q ≥ −2. Using the expansion

vl(k, r) =
∞∑

n=0

anrn+s, (5)

and (4), eq. (3) reads
∞∑

n=0

an[(n + s)(n + s − 1) − l(l + 1)]rn+s−2

−pb0

∞∑
n=0

ansrn+s+p−2

+k2
∞∑

n=0

anrn+s − c0

∞∑
n=0

anrn+s+q = 0. (6)

For q > −2 the indicial equation reads

s(s − 1) − l(l + 1) = 0. (7)

Consequently, in the vicinity of the origin vl(k, r) → rl+1

implying that v(k, 0) = 0, and hence it is regular at the
origin. However, if q = −2, then by considering the coeffi-
cient of rs−2 it can be easily shown that physical solutions
can be obtained provided

c0 > −1
4
− l(l + 1). (8)

For the case p < 0 then ρ(r) is singular at the origin.
If the velocity-dependent part is repulsive near the origin,
then ρ(r) > 1 for all r. However, if ρ(r) is attractive close
to r = 0, then it is less than 1 for all r. In either case, the
term 1 − ρ(r) ≈ −b0r

p in the vicinity of the origin, and
(3) is regular at the origin, provided q − p ≥ −2. We then
obtain

∞∑
n=0

an [(n + s − 1)(n + s + p) − l(l + 1)] rn+s−2

−k2

b0

∞∑
n=0

anrn+s−p +
c0

b0

∞∑
n=0

anrn+s+q−p = 0. (9)

Using the above equation it is possible to see that for
q − p = −2, eq. (3) has acceptable physical solutions if

c0

b0
≤ l(l + 1) +

1
4
(1 + p)2. (10)

However, to have wider applicability, we shall assume that
q − p > −2. In this case the indicial equation of (9) is

(s − 1)(s + p) − l(l + 1) = 0, (11)

and, by the Frobenious method, we have at least one so-
lution such that v(k, 0) = 0.

2.2 Behavior at large distances

In order to investigate the behavior of U(r) and ρ(r) at
large distances, we write vl(k, r) = gl(r)eikr and assume
g(r) to be a slowly varying function of the radial variable
r. If we substitute for vl(k, r) in (3) and ignore the small
term g′′l (r) we get

ln[gl(r)] =
∫ ∞

b

U−ρk2+ρ′(ik−1/r) + l(l + 1)(1−ρ)/r2

2ik(1 − ρ) − ρ′
,

(12)
where b > 0. For gl(r), and consequently vl(k, r), to be
finite we require

lim
r→∞U(r) =

M

r1+ε
, (13)

and
lim

r→∞ ρ(r) =
N

r1+ε
, (14)

where ε > 0, and M , N are finite constants. This implies
that at large distances both the local and the velocity-
dependent parts of the potential must fall off faster than
1/r.

3 The scattering wave function as a linear
combination of Jost solutions and functions

The Kisslinger potential may be transformed into a local,
but energy-dependent one by carrying out the transfor-
mation on the wave function [8]

vl(k, r) =
χl(k, r)√
1 − ρ(r)

. (15)
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Substituting for vl(k, r) in eq. (3) results in

χ′′
l (k, r) +

[
k2 − l(l + 1)

r2
− Ue(k, r)

]
χl = 0, (16)

where Ue(k, r) is the effective local, but energy-dependent
potential defined as

Ue(k, r) = − 1
(1 − ρ(r))

×
[
k2 − U(r) +

ρ′(r)
r

+
ρ′2(r)

4(1 − ρ(r))
+

ρ′′(r)
2

]
. (17)

Apart from the fact that the effective potential depends
on the wave number k, the above is the Schrödinger equa-
tion for an arbitrary angular momentum quantum num-
ber. Following closely a similar procedure to that adopted
in [4], it is possible to express χl(k, r) in terms of a linear
combination of Jost solutions and functions, viz

χl(k, r) = − 1
2ik

1
|fl(k)|

× [
fl(−k)fl(k, r) − (−1)lfl(k)fl(−k, r)

]
, (18)

where the Jost solutions are defined asymptotically as

lim
r→∞ e−iπl/2e±ikrfl(±k, r) = 1, (19)

and the corresponding Jost functions are defined as

fl(±k) = fl(±k, 0) =
2l + 1

(2l + 1)!!
lim
r→0

(kr)lfl(±k, r). (20)

For ρ(r) = 0, the analytic properties of the Jost solutions
and functions of (16) are presented in [9]. However, in our
case ρ(r) is not zero. The analytic properties of the Jost
solutions in the complex k-plane are identical to those de-
rived in [4], for the case l = 0 in the presence of a Kisslinger
potential, except at k = 0. Provided the potential terms
satisfy∫ ∞

0

r|U(r)|dr < ∞,

∫ ∞

0

r2|U(r)|dr < ∞, (21)

and∫ ∞

0

r|ρ′′(r)|dr < ∞,

∫ ∞

0

r2|ρ(r)|dr < ∞, (22)

then fl(k, r) is analytic in the lower-half k-plane except at
k = 0, where it has a pole of order l. The conditions in (21)
are the same as those imposed on U(r) in the absence of
ρ(r), namely that U(r) diverges slower than 1/r at small
distances and falls off faster than 1/r3 at infinity. However,
the first condition imposed on the Kisslinger part of the
potential implies that ρ′(r) diverges less than 1/r for small
r. This can be satisfied if, in the vicinity of the origin,
ρ(r) ≈ b0r

p, where p > 0. The second condition demands
that ρ(r) decreases faster than 1/r3 at large distances.

The analyticity of the Jost solution fl(k, r) is extended if
we impose the more stringent inequalities∫ ∞

0

emr|U(r)|dr < ∞,

∫ ∞

0

emr|ρ(r)|dr < ∞, (23)

where m is real and positive. In such a case, fl(k, r) is ana-
lytic for Im(k) < m/2 except at k = 0. From the boundary
condition (19) and the form of eq. (3) one may conclude
that in the region of analyticity, including the real axis,
the Jost solutions and functions satisfy the conditions

f∗
l (−k∗, r) = (−1)lfl(k, r), (24)

and
f∗

l (−k∗) = fl(k). (25)

The scattering function may now be expressed as

vl(k, r)=− 1
2ik

1√
1−ρ(r)

×
[
e−iδl(k)fl(k, r)−(−1)leiδl(k)fl(−k, r)

]
, (26)

where δl(k) is the scattering phase shift, in terms of which
the scattering matrix is defined as

Sl(k) = e2iδl(k) =
fl(k)

fl(−k)
. (27)

The symmetry properties of the Jost solutions and func-
tions stated in (24) and (25) imply that vl(k, r) is real
for real values of k. Using (19) and the fact that both
the local and the velocity-dependent parts of the poten-
tial vanish faster than 1/r at infinity, then vl(k, r) behaves
asymptotically as

vl(k, r) =
2l + 1

k
sin(kr + δl(k)) . (28)

Provided the conditions in (23) apply, the scattering
wave function, vl(k, r), may be analytically continued into
the upper-half of the complex k-plane to the zeros of
fl(−k) situated on the positive part of the imaginary axis.
Such zeros are simple, and are poles of the scattering ma-
trix Sl(k) corresponding to the positions of bound states.
In fact, for k = iλ with λ > 0 , we have

vl(iλ, r) = − 1
2λ

1√
1 − ρ(r)

(−1)leiδl(iλ)fl(−iλ, r), (29)

which at infinity behaves like

vl(iλ, r) = − 1
2λ

(−1)leiδl(iλ)fl(−iλ, r) ∝ e−λr . (30)

The function vl(iλ, r) is a square integrable function as it
vanishes at the origin, and decays exponentially at large
r. Hence it represents a bound-state wave function.

For bound states, the Schrödinger equation in (3)
transforms to

u′′
l (r) − ρ′

1 − ρ
u′

l(r) +
1

1 − ρ

×
[
−λ2−U(r) +

ρ′

r
− (1 − ρ)

l(l + 1)
r2

]
ul(r) = 0, (31)
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where ul(r) is the bound-state wave function satisfying
the boundary conditions

ul(0) = 0, lim
r→∞ul(r) = (−i)lfl(−iλ, r) ∝ e−λr. (32)

In the vicinity of a bound-state pole, the S-matrix may
be parameterized as

Sl(k) = e2iδl(k) = eiπl [NlGl(k)]2

λ + ik
, (33)

with N2
l being the residue at the bound-state pole. In the

unitarized scattering length approximation N2
l = 2λ and

G2
l (k) =

λ − ik

2λ
, (34)

and hence, at a bound-state pole, Gl(iλ) = 1. The bound-
ary conditions imposed on the scattering and bound-state
functions, together with the fact that U(r) and ρ(r) are
both real, ensure that, for k real, both vl(k, r) and ul(r)
remain real for all r. It is then possible to analytically
continue vl(k, r) in k to the position of a bound-state pole
k = iλ on the positive imaginary axis. However, special at-
tention must be paid to the singularity structure of eiδl(k)

as it has a branch cut at the pole. Using eq. (33) at the
position of a bound-state pole, we have

lim
k→iλ

[
√

2λ(λ2 + k2)vl(k, r)] =

−[
√

λ + ikeiδl(k)]k=iλfl(−iλ, r) = −Nlul(r) . (35)

In what follows we shall show that Nl is uniquely deter-
mined by the normalization of the bound-state wave func-
tion.

If we multiply (3) by ul(r) and (31) by vl(k, r) and
then rearrange, we arrive at

d
dr

{(1 − ρ(r))[u′
l(r)vl(k, r) − ul(r)v′

l(k, r)]} =

(λ2 + k2)ul(r)vl(k, r). (36)

Integrating the above and using the fact that ul(r) and
vl(k, r) vanish at the origin leads to

(1 − ρ(r))[u′
l(r)vl(k, r) − ul(r)v′

l(k, r)] =∫ r

0

(λ2 + k2)ul(r′)vl(k, r′)dr′. (37)

In the limit r → ∞ both sides of the above equation van-
ish. In order to a void this, we define

wl(k, r) = 2ik
√

λ + ik vl(k, r), (38)

which by (33) has the limit at the pole

wl(iλ, r) = Nlul(r). (39)

Multiplying (37) by 2ik
√

λ + ik and differentiating the re-
sulting with respect to k readily gives

(1 − ρ(r)) [u′
l(r)ẇl(k, r) − ul(l)ẇ′

l(k, r)] =∫ r

0

[
(λ2 + k2)ẇl(k, r′) + 2kwl(k, r′)

]
ul(r′)dr′, (40)

where the dot refers to differentiation with respect to k.
By taking the limit k → iλ followed by r → ∞, the first
term in the integrand vanishes and the right-hand side
simplifies to

2iλNl

∫ r

0

u2
l (r

′)dr′. (41)

Making use of (26), (33) and (38) in the neighborhood of
a bound-state pole gives√

1 − ρ(r)wl(k, r) = NlGl(k)(−i)lfl(−k, r)

−(−i)l (λ + ik)
NlGl(k)

fl(k, r), (42)

which when differentiated with respect to k gives√
1 − ρ(r)ẇ(k, r) = (−i)lNlĠl(k)fl(−k, r)

+(−i)lNlGl(k)ḟl(−k, r) − (−1)l il+1

NlGl(k)
fl(k, r)

−(−i)l λ + ik

NlGl(k)
ḟl(k, r) + (−i)l(λ + ik)

Ġl(k)
NlG2

l (k)
fl(k, r).

(43)

At the position of a bound-state pole, we have√
1 − ρ(r)wl(iλ, r) = (−i)lNlfl(−iλ, r), (44)

and √
1 − ρ(r)ẇl(iλ, r) = (−i)lNlĠl(k)fl(−iλ, r)

+(−i)lNlḟl(−iλ, r) − (−1)l i
l+1

Nl
fl(iλ, r). (45)

The Jost solutions fl(±iλ, r) ∝ e±λr at infinity, then the
only surviving term on the righ-hand side of the last equa-
tion is that proportional to fl(iλ, r). Equating both sides
of (40) and noting that ρ(r) vanishes at infinity gives

1 = N2
l

∫ ∞

0

u2
l (r)dr. (46)

The above proves that Nl is actually the normalization
constant of the bound-state wave function. The last result
may be rewritten in the form

lim
k→iλ

[√
2λ(λ2 + k2)

(
λ

k

)l

vl(k, r)

]
= −(−i)lul,λ(r),

(47)
where ul,λ(r) is the normalized bound-state wave function.
The factor λ/k has been introduced to take out the explicit
threshold behavior and leads to and extra overall phase
factor as stated in the last result.

4 Analytical test of the extrapolation relation

For simplicity, we shall consider the case l = 1 and solve
the Schrödinger equation when the Kisslinger potential
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has the form of a spherically symmetric square well. In
such a case, exact solutions may be obtained that may
provide a valuable clue as to the validity of the derived
relation in the presence of a Kisslinger potential. The as-
sumed forms of the potentials are

U(r) = −U0θ(a − r), (48)

ρ(r) = Aθ(a − r), (49)

where a is the common radius of both potentials. The
boundary conditions are such that the wave functions are
continuous at r = a, but due to the effect of ρ(r) at the
sharp boundary, the condition on the derivatives becomes

(1 − A)ψ′(r < a) = ψ′(r > a). (50)

The solutions for the bound-state wave functions for l = 1
are

Ri(r) = Nj1(κr), r ≤ a , (51)

Re(r) = −N sin(κa)eλah1(iλr), r ≥ a , (52)

where j1(x) and h1(x) are the Bessel and Hankel functions
respectively for l = 1. Further

κ =

√
U0 − λ2

1 − A
, (53)

and Ri(r), Re(r) are the internal and external radial wave
functions, respectively. The normalization constant N =√

2N1/a3N2, where

N1 = (4 + a4κ4)(1 + λa)2A2 + a4(κ2 + λ2)
× (λ2 + κ2(1 + aλ)2) + 2a2A{2λ2(1 + λa)
−a2κ4(1+λa)2+κ2(2+4λa+3a2λ2+a3λ3)}, (54)

N2 = a2(κ2 + λ2)(3 + 3λa + λ2a2)
+A2{−2 − 4λa + 3a3κ2λ

+a4κ2λ2 + a2(3κ2−2λ2)] + A{6 + 12λa−2a4κ2λ2

+a2(−6κ2 + 7λ2) + a3(−6κ2λ + λ3)}, (55)

and the transcendental equation that determines the
bound-state energies is

cot(κa)
κa

− 1
κ2a2

=
(1 − A)(1 + λa)

λ2a2 + 2A(1 + λa)
. (56)

Finally, the scattering wave functions are

Ri(K, r) = 3Cj1(Kr), r ≤ a , (57)

Re(k, r) = 3{cos δ1(k)j1(kr)
− sin δ1(k)n1(kr)}, r ≥ a , (58)

where

K =

√
U0 + k2

1 − A
. (59)

and

C−2 =
{(

1−A+
2A

K2a2

)
sin Ka− 2A

Ka
cos Ka

}2

+k2a2

×
{(

2A

k2a2
− 1

)
cos Ka

Ka

+
(

1
K2a2

− 1
k2a2

+
A

k2a2
− 2A

a4k2K2

)
sin Ka

}2

. (60)

An expression for tan δl is obtained by matching the inter-
nal and external scattering wave functions at the bound-
ary according to (50).

Substituting the scattering wave functions above on
the left-hand side of (47), and then using l’ Hôpital’s rule,
one recovers the right-hand side, thus analytically proving
the correctness of the relation.

5 Numerical resolution of the Schrödinger
equation

In this section we shall carry out a numerical resolution
of the Schrödinger equation to determine the range of va-
lidity of the extrapolation relation. The bound-state en-
ergies (and hence the values of λ) are determined using
(56). For A = 0.5, and U0 = 6.5, only one bound state is
sustained corresponding to λ = 0.164. The first allowed
bound state occurs at a higher potential, U0 = 6.5, than
that needed in the s-wave case. This is reasonable from
a physical point of view. The l = 1 term is interpreted
as an additional potential energy, which corresponds to a
repulsive “centrifugal force”. This suggests that a particle
possessing angular momentum requires a stronger attrac-
tive potential to bind it than a particle with zero angular
momentum. Figure 1 shows the bound-state wave function
for λ = 0.164 represented as a solid line and the scattering
wave function modified according to

v1(k, r) ≈ − k

λ
√

2λ(λ2 + k2)
ul,λ(r), (61)

The dashed line corresponds to k = 0.17, while the dash-
dotted and dotted lines correspond to k = 0.3 and 0.4,
respectively. Clearly, in the vicinity of a bound-state pole
the agreement between the bound-state wave function and
the modified scattering one is best at short distances. The
cross-over point, which was also observed in [4], serves to
limit the deviation from the extrapolation relation. The
discontinuity in the derivatives of the wave functions at
the sharp boundary, due to the Kisslinger term, is clear.

When the local potential is reduced to −21.62, two
bound states are possible. The first corresponds to λ =
0.164, while for the other λ = 3.66. In fig. 2, the solid
curve is the bound-state wave function corresponding to
U0 = 21.62 and λ = 0.164. The dashed line represents the
modified scattering wave function. In the vicinity of the
bound-state pole, the agreement is better here than that
observed in fig. 1. This is so, since the value of U0 = 21.62
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Fig. 1. The bound-state wave function (solid line) correspond-
ing to U0 = 6.5, λ = 0.164 and a Kisslinger term A = 0.5. The
modified scattering wave function according to (61) is plotted
corresponding to k = 0.17 (dashed line), k = 0.3 (dash-dotted
line) and k = 0.4 (dotted line).

is large compared to λ = 0.164 and k = 0.17. Conse-
quently, the values of κ and K are very close and hence
better agreement. For the higher-energy bound state λ =
3.66, the deviation from the derived relation is quite large
as the values of κ and K differ markedly.

In principle, one may derive an analytical expression
for the deviation from the extrapolation relation as was
done in [4]. But the presence of the velocity-dependent
term in the case l = 1 complicates the algebra and one
may lose physical insight with such expressions. However,
by examining figs. 1 and 2, it can be concluded that such
corrections are small at small distances and low energies.

6 Discussion and conclusion

In this work, we have shown analytically that the scat-
tering and corresponding bound-state wave functions are
linked through a simple relation, which is independent of
the details of the potential, at the position of a bound-
state pole. This has been done for l > 0 in the presence
of a velocity-dependent Kisslinger potential. The extrap-
olation relation was tested analytically by solving exactly
the Schrödinger equation for l = 1, when the Kisslinger
potential took the form of a spherically symmetric
square well. Using such solutions on the left-hand side of
(47), and with the help of l’ Hôpital’s rule, one readily

Fig. 2. The bound-state wave function (solid line) plotted for
U0 = 21.62, λ = 0.164 and A = 0.5. The corresponding mod-
ified scattering wave function is plotted for k = 0.17 (dashed
line).

recovers the right-hand side, thus showing the correctness
of the extrapolation relation at the bound-state pole. Fur-
ther, a numerical resolution of the Schrödinger equation
was carried out and, as can be seen in figs. 1 and 2, the
agreement between the bound-state wave functions and
the corresponding extrapolated scattering ones is better
at small distances and low energies.

In the s-wave case, the binding energies are lower than
the corresponding ones in the p-wave case. Therefore, the
agreement between the bound and modified scattering-
state wave functions in the s-wave case is better than that
for the p-wave in the vicinity of a bound-state pole.
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